Random Projections, Graph Sparsification, and Differential Privacy
نویسنده
چکیده
This paper initiates the study of preserving differential privacy (DP) when the data-set is sparse. We study the problem of constructing efficient sanitizer that preserves DP and guarantees high utility for answering cut-queries on graphs. The main motivation for studying sparse graphs arises from the empirical evidences that social networking sites are sparse graphs. We also motivate and advocate the necessity to include the efficiency of sanitizers, in addition to the utility guarantee, if one wishes to have a practical deployment of privacy preserving sanitizers. We show that the technique of Blocki et al. [3] (BBDS) can be adapted to preserve DP for answering cut-queries on sparse graphs, with an asymptotically efficient sanitizer than BBDS. We use this as the base technique to construct an efficient sanitizer for arbitrary graphs. In particular, we use a preconditioning step that preserves the spectral properties (and therefore, size of any cut is preserved), and then apply our basic sanitizer. We first prove that our sanitizer preserves DP for graphs with high conductance. We then carefully compose our basic technique with the modified sanitizer to prove the result for arbitrary graphs. In certain sense, our approach is complementary to the Randomized sanitization for answering cut queries [17]: we use graph sparsification, while Randomized sanitization uses graph densification. Our sanitizers almost achieves the best of both the worlds with the same privacy guarantee, i.e., it is almost as efficient as the most efficient sanitizer and it has utility guarantee almost as strong as the utility guarantee of the best sanitization algorithm. We also make some progress in answering few open problems by BBDS. We make a combinatorial observation that allows us to argue that the sanitized graph can also answer (S, T )-cut queries with same asymptotic efficiency, utility, and DP guarantee as our sanitization algorithm for S, S̄-cuts. Moreover, we achieve a better utility guarantee than Gupta, Roth, and Ullman [17]. We give further optimization by showing that fast Johnson-Lindenstrauss transform of Ailon and Chazelle [2] also preserves DP.
منابع مشابه
Randomness Efficient Fast-Johnson-Lindenstrauss Transform with Applications in Differential Privacy and Compressed Sensing
This paper resolves an open problem raised by Blocki et al. (FOCS 2012), i.e., whether other variants of the Johnson-Lindenstrauss transform preserves differential privacy or not? We prove that a general class of random projection matrices that satisfies the Johnson-Lindenstrauss lemma also preserves differential privacy. This class of random projection matrices requires only n Gaussian samples...
متن کاملCirculant Matrices and Differential Privacy
This paper resolves an open problem raised by Blocki et al. (FOCS 2012), i.e., whether other variants of the Johnson-Lindenstrauss transform preserves differential privacy or not? We prove that a general class of random projection matrices that satisfies the Johnson-Lindenstrauss lemma also preserves differential privacy. This class of random projection matrices requires only n Gaussian samples...
متن کاملDrawing Big Graphs Using Spectral Sparsification
Spectral sparsification is a general technique developed by Spielman et al. to reduce the number of edges in a graph while retaining its structural properties. We investigate the use of spectral sparsification to produce good visual representations of big graphs. We evaluate spectral sparsification approaches on real-world and synthetic graphs. We show that spectral sparsifiers are more effecti...
متن کاملIntelligent Control of a Sensor-Actuator System via Kernelized Least-Squares Policy Iteration
In this paper a new framework, called Compressive Kernelized Reinforcement Learning (CKRL), for computing near-optimal policies in sequential decision making with uncertainty is proposed via incorporating the non-adaptive data-independent Random Projections and nonparametric Kernelized Least-squares Policy Iteration (KLSPI). Random Projections are a fast, non-adaptive dimensionality reduction f...
متن کاملEfficient Sampling for Gaussian Graphical Models via Spectral Sparsification
Motivated by a sampling problem basic to computational statistical inference, we develop a toolset based on spectral sparsification for a family of fundamental problems involving Gaussian sampling, matrix functionals, and reversible Markov chains. Drawing on the connection between Gaussian graphical models and the recent breakthroughs in spectral graph theory, we give the first nearly linear ti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013